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SUMMARY

The paraneoplastic neurologic disorders target
several families of neuron-specific RNA binding pro-
teins (RNABPs), revealing that there are unique
aspects of gene expression regulation in the
mammalian brain. Here, we used HITS-CLIP to deter-
mine robust binding sites targeted by the neuronal
Elav-like (nElavl) RNABPs. Surprisingly, nElav protein
binds preferentially to GU-rich sequences in vivo
and in vitro, with secondary binding to AU-rich
sequences. nElavl null mice were used to validate
the consequence of these binding events in the brain,
demonstrating that they bind intronic sequences in
a position dependent manner to regulate alternative
splicing and to 30UTR sequences to regulate mRNA
levels. These controls converge on the glutamate
synthesis pathway in neurons; nElavl proteins are
required to maintain neurotransmitter glutamate
levels, and the lack of nElavl leads to spontaneous
epileptic seizure activity. The genome-wide anal-
ysis of nElavl targets reveals that one function of
neuron-specific RNABPs is to control excitation-
inhibition balance in the brain.

INTRODUCTION

The regulation of posttranscriptional gene expression increases

organismal complexity and proteome diversity in higher organ-

isms. Not surprisingly such regulation, including alternative

splicing (AS), 30UTR regulation and RNA editing is especially

prevalent in the nervous system, likely underlying the complex
Neu
set of reactions carried out in this tissue required for the develop-

ment and physiology of the many different cell types in the brain

(Castle et al., 2008; Li et al., 2007, 2009; Licatalosi and Darnell,

2010; Pan et al., 2008; Wang et al., 2008). Tissue-specific AS

and 30UTR regulation are regulated by the interactions of

cis-acting elements on RNA with RNA binding proteins

(RNABPs) that bind to and either block or enhance the recruit-

ment of the regulatory machinery. New technologies to assess

tissue-specific AS have rapidly expanded (Barash et al., 2010;

Calarco et al., 2011; Castle et al., 2008; Das et al., 2007),

revealing new rules of regulation, such as the finding that the

position of RNABP binding within a pre-mRNA is a major deter-

minant of AS control (Licatalosi and Darnell, 2010).

Although a very large fraction of RNABPs encoded in the

mammalian genomes are expressed in the nervous system, their

RNA targets and the roles of these targets in neuronal physiology

are largely unknown (McKee et al., 2005). One such highly abun-

dant family of RNABPs are the Elavl (Elav-like) genes that share

significant homology with theDrosophila ELAV (embryonic lethal

and abnormal vision) gene. Elavl1 (HuA/R) is expressed in a wide

range of non-neuronal tissues and has been reported to regulate

various gene expression processes in tissue culture cells,

including regulation of steady state levels by binding to ARE

(AU-rich elements) in 30UTRs of target mRNAs (Brennan and

Steitz, 2001; Hinman and Lou, 2008). Three other family

members, Elavl2 (HuB/Hel-N1), Elavl3 (HuC), and Elavl4 (HuD)

were discovered as autoantigens in a multisystem neurologic

disorder termed paraneoplastic encephalomyelopathy (Szabo

et al., 1991), and are exclusively expressed in neurons (referred

to collectively as neuronal Elavl [nElavl]) (Okano and Darnell,

1997). The nElavl proteins exhibit a high degree of sequence

homology and structural similarity with the well-established

Drosophila AS factor SXL (Sex-lethal) as well as ELAV (Koushika

et al., 1996, 2000; Lisbin et al., 2001; Soller and White, 2003,

2005; Wang and Bell, 1994). More recently, several studies
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carried out in mammalian cell lines have presented evidence that

the nElavl proteins are able to regulate alternative splicing of

several pre-mRNAs (Hinman and Lou, 2008; Lebedeva et al.,

2011; Mukherjee et al., 2011; Wang et al., 2010a; Zhu et al.,

2008). However, it is not known whether and to what extent

nElavl proteins are regulators of AS in vivo in the mammalian

nervous system. Moreover, the range of endogenous target

RNAs of nElavl proteins and the kinds of neuronal processes

regulated by these targets are unknown, other than a compilation

of RNAs coprecipitating with Elavl4 (HuD) in transgenic Elavl4

overexpressing mice (Bolognani et al., 2010).

Generating RNA profiles that compareWT andmutant animals

has provided a powerful means of correlating RNA variants with

the action of RNABPs, but such strategies are unable to discrim-

inate direct from indirect actions. Combining such data with

global maps of direct RNABP-RNA interaction sites can generate

unbiased genome-wide insight into the regulation of alternative

splicing (Licatalosi and Darnell, 2010). This has been accom-

plished by applying cross-linking and immunoprecipitation

methods (Jensen and Darnell, 2008; Ule et al., 2003, 2005a),

particularly in combination with high-throughput sequencing

(HITS-CLIP) (Licatalosi et al., 2008), to analyze in vivo RNABP-

RNA interactions (Darnell, 2010). HITS-CLIP was first used to

identify hundreds of transcripts that are directly regulated by

the neuronal RNABP Nova in the brain (Licatalosi et al., 2008)

and has subsequently been used to analyze RNA regulation

mediated by a number of RNABPs (Darnell et al., 2011; König

et al., 2010; Lebedeva et al., 2011; Mukherjee et al., 2011; Toll-

ervey et al., 2011; Xue et al., 2009; Yeo et al., 2009). Combining

such analyses has yielded significant insight into the role of Nova

in neuronal physiology, development and disease (Huang et al.,

2005; Ruggiu et al., 2009; Yano et al., 2010).

In this study, we have generated Elavl3 null mice and used

splicing-sensitive microarrays and deep RNA sequencing to

identify nElavl-dependent regulatory events, and overlaid this

analysis with nElavl HITS-CLIP maps. Our results indicate that

in neurons, nElavl preferentially binds to conserved U-rich

sequences interspersed with G residues at exon-intron junctions

to either repress or enhance the inclusion of alternative exons.

These data were used to generate a position-dependent map

of nElavl functional binding sites in AS regulation and to discover

that while nElavl regulates largely independent gene networks

through overall transcript level and AS, these intersect in the

control of the synthesis of the major excitatory neurotransmitter

glutamate. In the absence of nElavl proteins, the level of gluta-

mate is severely compromised, and this imbalance is associated

with seizures in Elavl3 null mice. Taken together our genome-

wide approaches identify in vivo targets and functions of nElavl

proteins in regulating brain RNA and excitability.

RESULTS

Generation of Elavl3 Knockout Mice
To assess the functional action of Elavl3 on target transcripts, we

first generated an Elavl3 null mouse by homologous recombina-

tion in ES cells (Figure 1A). Mice harboring the homologous

recombinant cassette made no detectable Elavl3 by either

RNA or protein analysis, including western blot and immunoflu-
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orescence microscopy (Figure 1B and data not shown).

Elavl3�/� mice were viable and fertile. However, when they

were inbred into a C57Bl/6 background, we noted that Elavl3�/�

mice were present in new litters at well-below Mendelian ratios

(�10% offspring from the mating of two heterozygous parents).

Interestingly, when Elavl3�/� mice were outbred into the CD1

strain, Elavl3�/� pups were born at Mendelian ratios, suggesting

gene modifiers present in the outbred CD1 strain.

We contrasted nElavl immunofluorescence remaining in

Elavl3�/� mouse brain with previously characterized Elavl3

expression characterized by in situ hybridization (Okano and

Darnell, 1997). In particular, we had previously noticed that

several neuronal types showed nearly exclusive expression of

Elavl3 among all nElavl isoforms, including cerebellar Purkinje

neurons and hippocampal dentate gyrus (DG) neurons. Immuno-

fluorescence microscopy using a pan-nElavl antibody revealed

the absence of detectable remaining nElavl protein in both

Purkinje and DG neurons in the Elavl3�/� brain (Figures 1D

and 1E), consistent with Elavl3 being the sole nElavl protein in

these neurons.

Given that all nElavl expression was eliminated in Elavl3�/�

Purkinje neurons, we decided to analyze cerebellar function in

these mice by rotarod assay. This behavioral assay is widely

used to evaluate cerebellar dysfunction; however, other expla-

nations to reduced time on rotating rod are potentially possible.

Young adult Elavl3�/� mice showed significant defects in this

assay (p = 0.001) relative to heterozygous littermates (Figure 1C).

In order to exclude a generalized synaptic dysfunction in these

mice, we measured time to tail-twitch on hotplate testing as

a measure of sensory function and observed no difference in

either genotype, consistent with the observation that Elavl2, 3,

and 4 are all robustly expressed in dorsal root ganglia (Okano

and Darnell, 1997). Taken together, these observations suggest

that there are subsets of neurons that are particularly vulnerable

to the loss of Elavl3, while others are relatively resistant, consis-

tent with the expression patterns of the individual family

members and functional redundancy among nElavl proteins.

We also did not detect any gross anatomical defects in the

Elavl3�/� brain that could have potentially caused nonspecific

phenotypic effects (data not shown).

Whole Genome High-Throughput Sequencing
of nElavl-Bound RNA
In order to purify target RNA molecules to which nElavl proteins

are directly bound in vivo we carried out HITS-CLIP with three

different anti-nElavl antisera (each of which was specific for the

nElavl proteins; see Figure S1A available online). Six indepen-

dent CLIP experiments using WT and four independent experi-

ments using Elavl3�/� cortical tissue were completed (Figures

2A–2D). As a negative control, immunoprecipitation was carried

out using two different unrelated control antibodies that recog-

nized cdr2/3 proteins (anti-Yo antisera). We also examined

dependence on UV crosslinking by immunoprecipitating nElavl

from noncrosslinked tissue. In both of these controls, no signal

was detected after radio-labeling the immunoprecipitated RNA

and analyzing the results by denaturing PAGE (Figure 2E).

Out of 26,190,453 total reads, we obtained 11,966,926 reads

that can be unambiguously mapped to unique loci of the
.
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Figure 1. Generation of Elavl3–/– Knockout Mice

(A) The targeting construct used in generating Elavl3 KO locus by homologous recombination.

(B) The expression of Elavl3 protein is abolished in Elavl3�/� brain tissue (P21 WT, heterozygote and KO mice [littermates], as indicated). The lower heavy band

corresponds to Elavl3, upper bands represent Elavl2 and Elavl4. Results from P21 WT, Elavl3+/�, and Elavl3�/� mice were repeated in three independent litters.

(C) Rotarod or hotplate testing of cerebellar or sensory physiology in Elavl3+/� or Elav3�/� littermates, as indicated; second until falling off the rod or tail twitch are

shown. Rotarod testing was done with 6�8-week-old males (n = 3; p < 0.0001), and hotplate testing was done with 7�9-week-old males (n = 3, p = 0.11). Error

bars denote standard deviation.

(D and E) IF microscopy of Elavl3�/� mice compared to WT (+/+) littermate controls. A pan anti-nElavl antibody (a-nElavl) was used for IF and contrasted with

staining for the Purkinje neuronal marker Calbindin (D) or nuclei (DAPI, E).

(E) Arrows point to nElavl immunostaining in WT and lack of it in Elavl3�/� DG.
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Figure 2. Isolation of nElavl-RNA Com-

plexes by CLIP

(A) nElavl-RNA complexes from WT and Elavl3�/�

forebrain tissue from mice at age P0 were UV-

crosslinked and immunoprecipitated (by nElavl

antibody1) using the CLIPmethod. Representative

autoradiograms of [g-32P]ATP 50end labeled RNA

molecules, run on a polyacrylamide gel and

blotted onto nitrocellulose filter are shown. Over-

digestion of the lysate with RNase A (1:100 dilu-

tion) resulted in approximately a 40 kDa band,

corresponding to nElavl and associated RNA

fragments that are protected. The size of nElavl-

associated RNA was titrated by increasing dilu-

tions of RNase A treatment. Stronger signal was

detected in the WT lanes as opposed to Elavl3�/�

lanes. The signal detected in the Elavl3�/� lanes

are due to Elavl2/4 that are also immunoprecipi-

tated by the same antibody. Hatched box marks

the piece of membrane from which nElavl-asso-

ciated RNA was isolated.

(B–D) Line traces of nElavl-RNA membrane shown

in (A) are plotted. Individual lanes are color coded.

(E) No signal was detected when two different

control antibodies (anti-Yo autoantibodies) were

used (lanes 1–4) or when UV-crosslinking was

omitted (lanes 7–8). nElavl-RNA complexes have

been immunoprecipitated using antibody2 (lanes

9–10).

See also Figure S1 and Tables S1–S3.
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reference genome (mm9) (Table S1). Further collapsing of poten-

tial PCR duplicates by identical genomic coordinates gave

822,933 unique reads (nElavl tags) belonging to 81,468 clusters

(Tables S1 and S2) (a group of two ormore tags overlapping by at

least one nt [nucleotide]). In order to determine a set of statisti-

cally significant reproducible clusters, for each cluster we calcu-

lated a biological complexity coefficient (BC), representing the

number of independent experiments that contributed tags to

the corresponding cluster, a chi-square score and a false

discovery rate (Table S2). To assess differences in the specificity

of three different nElavl antibodies, we determined correlation

coefficients (R2) between individual experiments. A high correla-

tion was evident in all pair-wise comparisons of antibodies and in

comparison of clusters in WT and Elavl3�/� tissue when we

calculated R2 coefficients based on number of tags per 30UTRs
of individual genes (Ab1-Ab1: 0.83 (2 independent experiments),

Ab1-Ab2: 0.8, Ab1-Ab3: 0.79, WT-Elavl3�/�: 0.81). In contrast,

comparison of nElavl clusters with those of another neuronally

expressed RNA binding protein, Nova (Licatalosi et al., 2008), re-

sulted in a R2 value of only 0.28, demonstrating the specificity

and consistency of CLIP results using individual nElavl anti-

bodies. We also calculated R2 values based on number of tags

in individual clusters. Since this is a more stringent method of
1070 Neuron 75, 1067–1080, September 20, 2012 ª2012 Elsevier Inc.
calculation in general we observed lower

R2 values (Table S3). Nonetheless, a

higher correlation between the three

nElavl antibodies in comparison to nElavl

and Nova tags was evident.
To gain insight into the potential functional roles nElavl proteins

have in RNA regulation, we determined the location of nElavl

clusters on target RNA molecules. Analysis of reproducible

binding sites with no winnowing of data (all 81,468 clusters)

demonstrated that the majority (68.3%) mapped to mRNA-

encoding genes, while many (31.7%) mapped to intergenic

regions, which may correspond to bona fide binding in unanno-

tated RNAs or may represent biologic or experimental noise. To

focus on highly reproducible mRNA clusters, we identified

clusters that harbored CLIP tags from at least five out of six

independent experiments (BC = 5/6 or 6/6). Interestingly,

the vast majority of these reproducible clusters were in the

30UTR, with very few reproducible 50UTR clusters and relatively

few intronic clusters. For example, among 747 clusters with

BC R 5/6, 74% mapped to the 30UTR (including sequences

within 10 kB downstream of stop codons, which most likely

correspond to unannotated 30UTRs) (Licatalosi et al., 2008),

while only 12% mapped to introns and only one mapped to the

50UTR (Figure 3A). A very similar distribution profile of clusters

was evident in the results obtained from Elavl3�/� tissue. Taken

together, our results suggest a possible role for nElavl proteins in

the regulation of pre-mRNA and also indicate that the greatest

steady-state binding to defined sites is in neuronal 30UTRs.
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Figure 3. nElavl Binds to U-rich Sequences

(A) Distribution of nElavl tag clusters generated

from six independent WT tissue samples is plotted

as a function of biologic complexity.

(B andC) Cluster sequenceswith either FDR< 0.01

(B) or BC > = 1 (C) were used to predict nElavl

binding motif by MEME-CHIP tool.

(D) Top ten most frequent hexamers found in

nElavl clusters (FDR < 0.01).

See also Tables S4–S6.
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In order to gain insight into Elavl3 only clusters and hence

Elavl3-dependent biological functions we subtracted clusters

obtained usingElavl3�/� tissue fromWT clusters. The subtracted

data set (presumably representing Elavl3 only clusters) as well as

the WT data set were most significantly enriched in genes regu-

lating synaptic function, postsynaptic membrane, neuronal

transmission, and glutamate receptor activity. The Elavl3�/�

data set (presumably representing Elavl2/4 only clusters) was

most significantly enriched in genes regulating neuronal projec-

tions, dendrites, and axons. This set was also enriched in genes

that regulate RNA binding, a feature that we did not observe in

the subtracted data set. These data suggest that synaptic func-

tion might be preferentially regulated by Elavl3 as opposed to

Elavl2 or 4 (Table S4).

We determined the consensus nucleotide sequence prefer-

ence of nElavl binding to target RNA from our CLIP data. The

nucleotide sequences of 238 most robust cluster sites (FDR <

0.01) were analyzed by MEME-CHIP tool designed for gener-

ating consensus motifs using large data sets (Bailey and Elkan,

1994). The most frequent (159/238) and significant (E value:

14e�106) motif was a 15 nt long sequence enriched in U nucleo-

tides (Figure 3B). We also analyzed the sequence preference of

all clusters (BC R 1) representing a larger data set with lower
Neuron 75, 1067–1080, Sep
confidence and similarly observed a

U-rich motif with a secondary preference

for G nucleotides (Figure 3C).

Next, we analyzed the frequency of all

possible hexameric sequences within

the robust clusters (FDR < 0.01 or

BC R 5). We carried our analysis in

different subsets of clusters depending

on where the clusters were located

on individual transcripts (i.e., 30UTRs,
50UTRs, coding regions, or introns) to

determine whether there were different

sequence preferences for nElavl-binding

to different locations on a pre-mRNA.

In all subsets, we observed a general

trend where the majority of hexamers

among the most frequently identified,

consisted of a stretch of pure U residues

(28% of top ten most frequent hexameric

sequences identified in clusters with

FDR < 0.01) or a U stretch embedded

mostly with a single G (41%) and to a

lesser extent a single A nucleotide (31%)
(Figure 3D). Often we observed a stretch of A residues in the

top ten most frequent hexameric sequences, which we believe

represents an artifact of sequencing and were removed from

further analysis (Table S5).

The CLIP binding consensus was somewhat unexpected, as

the nElavl proteins were originally suggested to bind more

specifically to AU-rich elements in vitro or in tissue culture cells

(Table S6), while GU-rich elements were �1.3-fold more abun-

dant that AU-rich elements in nElavl binding clusters. We there-

fore compared theCLIP results with in vitro RNA selection under-

taken with the nElavl proteins. Recombinant histidine-tagged

Elavl2, 3, and 4 proteins were purified and used for in vitro

RNA selection using column chromatography to select from

a random library of 52 nt RNAs (complexity 1015, as previously

described in Buckanovich and Darnell [1997]). After seven

rounds of in vitro selection, bound RNAs were sequenced,

revealing a consensus in which nElavl bound U-rich stretches

interspersed with purine residues, primarily G residues (Fig-

ure 4A). We confirmed that Elavl4 directly bound these RNAs

with high-affinity (Kd �1.5–4.5 nM) by gel shift and filter binding

assays (Figures 4B and 4C). Such concordance of in vitro RNA

selection and in vivo CLIP data has also been seen in compar-

ison of Nova CLIP and RNA selection data (Zhang et al., 2010)
tember 20, 2012 ª2012 Elsevier Inc. 1071
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Figure 4. In Vitro Selection of nElavl Binding

RNA Molecules

(A) Representative results from in vitro RNA

selection with the nElavl proteins. RNA selection

was carried out using the Elavl2, Elavl3, or Elavl4

proteins for 6–8 rounds of selection (R6–R8, as

indicated). Consensus GU-rich elements are

shown in blue and below the diagram.

(B) RNA gel-shift assay, in which DR8-9 clone RNA

selected by Elavl4 was incubated with recombi-

nant Elavl4 as indicated. Multiple forms of Elavl4/

RNA complexes (arrows) have slower migration

profiles with increasing amounts of protein (RNA =

50 fmol/lane, protein = 0, 25, 50, or 75 ng), and this

effect is specific, as no effect on RNAmobility was

seen with either hnRNP A1 (25 ng) or when Elavl4

was incubated with an irrelevant control RNA

(SB2, a 52 base NOVA1 consensus sequence).

(C) Results of filter binding assays in which the

indicated amounts of Elavl4 fusion protein were

incubated with radiolabeled selected RNA (where

the number of GUUGU repeats [n] is shown, see

A). Red, DR8-2 RNA; blue, DR8-15 RNA; green,

DR7-5 RNA; black, control SB2 RNA (50 fmol/

reaction). Estimated kDs are shown. Error bars

denote standard deviation.
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and suggests that nElavl proteins function in vivo by binding

to clustered U-rich sequences, with interspersed purine

residues (G > A).

Analysis of nElavl-Dependent Alternative Splicing
in the Brain
The finding that nElavl binds to specific intronic sequences sug-

gested that the proteins might have roles in neuronal alternative

splicing. To investigate this possibility a whole genome analysis

of alternative splicing was undertaken. Given evidence of nElavl

functional redundancy among nElavl paralogs and previous find-

ings of quantitatively larger (albeit qualitatively similar) splicing

defects in Nova1/2 DKO pups (Ule et al., 2006) relative to single

Nova null mice (Ule et al., 2005b), we generated Elavl3�/�;
Elavl4�/� DKO mice for splicing analyses (Akamatsu et al.,

2005). These mice were born alive and were initially indistin-

guishable from WT littermates but died several hours after birth.

Elavl3 is themajor nElavl homolog expressed in the cortex at age

P0 and deletion of Elavl3 and Elavl4 together results in loss of

approximately 65% of total nElavl proteins in the cortex (Fig-

ure S1B). Since Elavl3/4 DKO pups die at P0, this time point

was chosen for analysis of splice isoforms of RNA transcripts.

Further, at time P0 nElavl protein levels are very close to the

peak expression observed at P7 in the cortex (Figure S1C).

Total RNA samples isolated from Elavl3�/�;Elavl4�/� DKO and

WT cortex at age P0 was profiled by exon junction microarrays.

Results were analyzed using an updated version of the ASPIRE

algorithm that identifies reciprocal changes in exon-excluded
1072 Neuron 75, 1067–1080, September 20, 2012 ª2012 Elsevier Inc.
versus exon-included mRNA isoforms

(Licatalosi et al., 2008; Ule et al., 2005b).

These analyses identified 227 alternative

exons with significant splicing changes
(according to amodified t test, jDI-rankj > 10.0; see Experimental

Procedures). RT-PCR was used to test and validate 15 out of 17

of these alternative splicing events with jDIj values (the absolute

value of the change in fraction of alternative exon usage) higher

than 0.15. We additionally screened 36 more targets with lower

jDIj values and validated an additional 22 targets. In total, 37

targets were verified with experimentally validated jDIj values
between 0.05 and 0.44 (Tables 1 and S7; Ule et al., 2005b).

Among these, 24 validated AS events displayed increased

exon exclusion and 13 displayed increased exon inclusion in

Elavl3�/�;Elavl4�/� mouse cortex. Within the validated AS

events, we observed predominantly cassette-type alternative

exon usage, as well as alternative 50 and 30 splice site choice,

mutually exclusive exon usage, and other complex patterns of

alternative splicing (Tables 1 and S7). Although quantitatively

smaller, a large fraction of these alternatively spliced exons

also exhibited changes in relative isoform abundance in single

Elavl3 KOs but not in single Elavl4 KOs (Table S7).

Generation of nElavl-RNA Regulatory Map
The finding that some exons are misregulated in Elavl3�/�;
Elavl4�/� brain suggests that the nElavl proteins might be regu-

lating splicing directly. To examine whether this was the case,

and whether the position of nElavl binding also might determine

the outcome of splicing, we overlaid a nElavl binding map on the

set of Elavl3/4 regulated cassette exons. We analyzed 59

cassette-type alternative exons that were either validated by

RT-PCR or predicted based on a t test ranking of Aspire2



Table 1. List of All Verified Elavl3/4-Dependent Alternative Exons

Gene Symbol

Transcript

Level Change Alt Exon Coordinates (mm 9) Alt Splicing Event DI (Microrray) DI (RT-PCR)

Clip1 1.01 chr5:124077303-124077419 cassette/complex �0.3 �0.44

Camta1 1.14 chr4:151166528-151166611 intron retention �0.38 �0.39

Grip1 0.98 chr10:119422530-119422685 cassette �0.27 �0.35

Gls 1.21 chr1:52244638-52244697 alt 30 exon �0.03 �0.3

Ogt 0.92 chrX:98838315-98838345 alt 30 ss �0.23 �0.3

Mapk9 1.08 chr11:49687766-49687837 mut ex �0.14 �0.27

Robo2 0.95 chr16:74009020-74009031 cassette �0.22 �0.23

2410002O22Rik 0.91 chr13:104942245-104942262 cassette �0.28 �0.22

Uevld 1.35 chr7:54190253-54190410 cassette �0.16 �0.2

Rapgef6 1.03 chr11:54507772-54508074 cassette �0.12 �0.19

Sult4a1 1.12 chr15:83909199-83909327 cassette �0.2 �0.18

Lrch3 0.99 chr16:32995892-32995999 cassette �0.22 �0.18

Q8BLQ9-2 0.96 chr16:66731630-66731749 cassette �0.29 �0.18

Dst 1.11 chr1:34306649-34306975 cassette �0.15 �0.18

Vps29 1.04 chr5:122806803-122806814 cassette �0.19 �0.17

Epb4.1 0.92 chr4:131518839-131518901 cassette/complex �0.13 �0.17

Dhdds 0.95 chr4:133556254-133556308 alt 30 ss �0.17 �0.15

Abi1 1.06 chr2:22809128-22809131 alt 30 ss �0.09 �0.13

Macf1 1.05 chr4:123074337-123074663 cassette �0.13 �0.11

Ank3 0.97 chr10:69416188-69416220 cassette �0.07 �0.11

Rod1 1.02 chr4:59559021-59559054 cassette �0.09 �0.08

Cadm3 1.13 chr1:175279153-175279254 cassette �0.07 �0.06

Mdm2 0.96 chr10:117146774-117146840 cassette �0.1 �0.06

2210010B09Rik 1.05 chr9:20393901-20394002 cassette 0.1 0.05

Cugbp2 0.97 chr2:6528928-6529007 cassette 0.08 0.06

Thyn1 0.93 chr9:26814386-26814536 cassette 0.14 0.06

Cldnd1 1.1 chr16:58729293-58729336 cassette 0.09 0.07

Nrxn1 1.06 chr17:91101328-91101351 cassette 0.06 0.09

Cltb 1.02 chr13:54698387-54698440 cassette 0.08 0.09

Ank2 1.04 chr3:126666301-126666399 cassette 0.09 0.11

Elavl2 0.86 chr4:90920832-90920870 cassette 0.06 0.12

Ap1gbp1 0.97 chr11:83853158-83853193 cassette 0.07 0.13

Kif2a 1.06 chr13:107759784-107759897 cassette 0.16 0.2

Snap25 1.07 chr2:136595479-136595596 mut ex 0.14 0.21

Mapk9 1.08 chr11:49687338-49687409 mut ex 0.13 0.27

Plekha5 0.84 chr6:140528868-140529056 cassette 0.25 0.28

Rufy2 1.29 chr10:62465694-62467405 alt 30exon 0.32 0.37

Thirty-seven Elavl3/4-dependent alternative exons were experimentally verified by RT-PCR. DI values obtained from splicing microarray analysis and

RT-PCR experiments are presented. A positiveDI value is associated with a higher fraction of exon-included isoform inWT compared to DKO samples.

Abbreviations: mut ex, mutually exclusive; alt 30 exon, alternative 30 exon; alt 30ss, alternative 30 splice site. See also Table S7.
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analysis (jDI-rankj > 10; Table S8). Nine of these transcripts had

zero tags in the alternative exons and the flanking regions and

were excluded from further analysis as theymight represent indi-

rect effects or limited coverage of our CLIP data, since we do not

believe that we have fully saturated nElavl binding sites in our

HITS-CLIP data set. A total of 436 tags from the remaining 50

alternative exons were overlaid onto a composite pre-mRNA to

generate a functional nElavl binding/splicing map (Figure 5A
Neu
and Table S8). This map revealed that in a majority of cases

nElavl binding sites were present in introns flanking the alterna-

tive exons and were most concentrated at exon/intron splice

junctions.

In order to identify those binding sites that are most relevant to

the alternative splicing events, a normalized complexity map

representative of common nElavl binding regions in different

pre-mRNAs was generated (Figure 5B), using strategies
ron 75, 1067–1080, September 20, 2012 ª2012 Elsevier Inc. 1073
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Figure 5. Normalized Complexity Map for

nElavl-Dependent Alternative Splicing

(A) nElavl tags mapping to nElavl-regulated

cassette exons or flanking introns are plotted onto

a composite transcript as a function of distance to

the 50 or 30 junctions of the alternative exon. Tags

from independent CLIP experiments are color

coded. Red and gray boxes represent a generic

alternative cassette exon and flanking constitutive

exons, respectively.

(B) Normalized complexity map of nElavl-depen-

dent alternative splicing of cassette exons. Red

and blue peaks represent binding associated

with nElavl-dependent exon inclusion and exclu-

sion, respectively. Motif preferences of 250 nt

sequences flanking nElavl-regulated alternative

exons are shown.

(C) Motif preferences of 250 nt sequences flanking

randomly selected alternative exons that display

no change in isoform abundance in DKO mice

are shown.

See also Figure S2 and Table S8.
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previously established for the neuronal splicing factor Nova (Li-

catalosi et al., 2008). The number of total nElavl-binding sites

in 50 nt windows spanning a 12 kb region was normalized to

the number of different transcripts displaying nElavl-binding in

each window, to the number of total nElavl tags in individual

pre-mRNAs and also to the number of independent experiments

(biologic complexity) in which the tags in each cluster were

identified. The results of this map revealed preferential nElavl

binding to the 50 splice site of the downstream intron in cassette

exons where nElavl promotes inclusion and to the immediate 30

and 50 splice sites in those exons where nElavl promotes exclu-

sion (Figure 5B). Furthermore, we observed a strong preference

for U-rich sequences in flanking regions of nElavl-dependent

exons and GC-rich sequences that were poor in U residues in

flanking regions of nElavl-independent exons (Figures 5B and

5C). This data suggests that nElavl proteins preferentially regu-
1074 Neuron 75, 1067–1080, September 20, 2012 ª2012 Elsevier Inc.
late the alternative splicing of a specific

subset of exons flanked by U-rich se-

quence motifs. Using the same data set

we also mapped tag locations in indi-

vidual nElavl pre-mRNA targets and

consistently observed intronic binding

within 250 nt of the exon/intron junctions

in the flanking introns in nElavl sup-

pressed and promoted alternative exons,

respectively (Figure S2A). Taken together,

our nElavl RNA map suggests a position-

dependent splicing code for nElavl-

regulated alternative cassette exon usage

that is consistent with previously reported

splicing factors.

Gene Ontology Analysis of nElavl
Splicing Targets
To address the biological processes

encoded by transcripts whose alternative
splicing was regulated by nElavl, we carried out enrichment anal-

ysis for gene ontology (GO) categories on those transcripts that

are nElavl-regulated at the alternative splicing level. For GO anal-

ysis the top 212 most significant target transcripts from our

Aspire2 analysis results were used and compared to all genes

expressed in WT brain (Table S10). These target alternative

exon included not just cassette exons but also other modes

of alternative splicing events regulated by nElavl. The nElavl-

regulated transcripts that were the most significantly enriched

overall encoded proteins involved in the regulation of protein

complex and cytoskeleton dynamics, in particular microtubule

polymerization and depolymerization activity at the synapse

and axon (Table S11). For example, the top 10 enriched terms

in biologic process (enriched 10- to 25-fold) all related to micro-

tubule assembly/disassembly, in cellular component (enriched

1.9- to 22-fold, median 3.8) related to the synaptic cytoskeleton,
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and in molecular function primarily related to regulation of

microtubules and small GTPase mediated signaling (enriched

2.1- to 37-fold, median 2.9).

A Direct Role for nElavl Proteins in 30UTR Regulation
The majority (63.5%) of robust nElavl binding sites (BC = 6) from

HITS-CLIP data mapped onto 30UTRs, suggesting that nElavl

might have roles in the brain besides regulation of alternative

splicing, such as maintenance of steady state mRNA levels.

We investigated this possibility by first comparing total transcript

levels in cortical tissue from WT and Elavl3�/�;Elavl4�/� brains

using Affymetrix exon microarrays. One hundred nineteen

transcripts displayed significant changes in steady-state levels

in DKO brain (two-tailed t test, p value < 0.01), with 89 transcripts

decreased and 30 increased (Table S9).

To assess which of these transcripts might be directly regu-

lated by nElavl binding in the 30UTR, we assessed which had

nElavl HITS-CLIP 30UTR binding sites. Those transcripts whose

abundance changed in DKO tissue had significantly more nElavl

HITS-CLIP tags when compared to all expressed transcripts

whose steady state levels were unaffected (p = 0.0037 by

Wilcoxon rank-sum test; Figure S3). More specifically, we iden-

tified nElavl binding sites in 24 of the 89 transcripts whose

abundance was decreased in DKO (Table S9).

A Role for nElavl in Regulating Glutamate in the Brain
GOanalysis of the 119 transcripts whose steady-state was regu-

lated by nElavl revealed a very different set of biologic processes

than those encoded by transcripts whose splicing was regulated

by nElavl. Transcripts whose steady-state levels were nElavl-

regulated were enriched for genes regulating amino acid and

sugar biosynthetic pathways (Table S11). Interestingly, the gluta-

mine amino acid biosynthetic pathway was an outlier among

GO biologic process enriched in nElavl-regulated steady-state

transcripts (39-fold enrichment, p < 0.002). The genes in this

pathway encode proteins catalyzing reactions that result in the

formation of amino acids of the glutamine family, comprising

glutamate, arginine, glutamine, and proline. Glutamate is the

major excitatory neurotransmitter and also the biochemical

precursor for the major inhibitory neurotransmitter GABA in the

mammalian forebrain (Martin and Rimvall, 1993).

The marked enrichment for nElavl regulation of steady state

mRNAs encoding the glutamine amino acid biosynthetic

pathway prompted us to examine whether nElavl played a role

in regulated glutamine synthesis in neurons. Measurement of

total glutamate levels in extracts of cortical tissue from Elavl3�/�;
Elavl4�/� mice revealed approximately 50% reduction com-

pared to WT littermates (Figure 6F).

The majority (70%) of neuronal glutamate is believed to be

synthesized within neurons by glutaminase enzyme (encoded

by Gls1/Gls gene) (Hertz and Zielke, 2004). Alternative usage

of a 30 exon during Gls1 pre-mRNA splicing results in the gener-

ation of two separate transcripts with different 30 coding andUTR

sequences, encoding for proteins harboring a short and a long

C-terminal domain that we term Gls-s and Gls-l, respectively

(Figure 6A). Interestingly, analysis of nElavl HITS-CLIP tags re-

vealed nElavl binding sites on intronic sequences flanking the

regulated alternative splice site, suggesting that nElavl might
Neu
promote the alternative use of the isoform Gls1-l by binding to

intronic regulatory sequences. We also observed that nElavl

binds to the 30UTR sequences of both isoforms (Figures 6A

and S4). Thus, nElavl has the potential to regulate Gls1 isoform

levels both at the AS and at the transcript abundance level.

The AS event generating the Gls-l and Gls-s isoforms was

listed as a top target in our Aspire2 AS analysis, with a validated

DI of �0.3, (Figure 6B and Table S7). Quantitative RT-PCR using

primers specific for each Gls isoform demonstrated that in

Elavl3�/�;Elavl4�/� DKO brain, abundance of the Gls-s isoform

did not change while abundance of the Gls1-l isoform was

reduced to approximately 50% of the WT levels (Figure 6D).

Western blot analysis using an antibody recognizing a common

epitope to both isoforms also demonstrated that the abundance

of Gls-s and Gls-l proteins were reduced to 60% and 25% of

the WT levels, respectively (Figures 6C and 6E). Since Elavl3/4

DKO die at age P0 it is difficult to further carry out any physiolog-

ical analyses. We assessed whether Elavl3�/� single KO mice

also exhibited a defect in glutamate regulation and observed a

smaller but significant decrease in total glutamate levels and in

Gls-l, but not Gls-s, protein levels (Figure S5). These results point

to a role for nElavl proteins in directly controlling Gls-s and Gls-l

levels in the nervous system through reinforcing mechanisms of

involving both the regulation of AS and mRNA half-life, consis-

tent with nElavl HITS-CLIP results demonstrating direct binding

to both intronic and 30UTR elements.

Seizures in Elavl3–/– Mice
To assess whether theremight be a physiologic correlate of exci-

tation/inhibition imbalance manifested by misregulation of gluta-

mate signaling in Elavl3�/� mice, we undertook an EEG analysis

of cortical function. Video EEG monitoring of awake and

behaving mutants revealed a striking pattern of abnormal

cortical hypersynchronization in both Elavl3+/� and Elavl3�/�

mice never seen in WT mice (Figure 7A; Movie S1). In Elavl3+/�

mice, there was a nearly continuous presence (1–9/min) of bilat-

erally synchronous sharp cortical spike discharges, sometimes

accompanied by brief afterdischarges (Figure 7B). Elavl3�/�

mice displayed similar discharges as well as more severe,

non-convulsive electrographic seizures lasting from 10–30 s

(Figure 7C). Both patterns demonstrate aberrant hypersynchro-

nization in cortical networks.

DISCUSSION

Until recently studies aimed at identifying regulatory RNA

sequences have been limited to correlative information lacking

direct functional links to biological processes. HITS-CLIP

technique provides a methodology to identify such functional

RNA-protein interaction sites and has been successfully applied

to identifying binding sites and uncovering new biological func-

tions for several RNABPs, including Nova (Licatalosi et al.,

2008), PTB (Xue et al., 2009), hnRNP C (König et al., 2010),

TIA-1 (Wang et al., 2010b), TDP-43, and Fox2 (Yeo et al., 2009).

In the present study, we carried out unbiased genome-wide

nElavl HITS-CLIP experiments in combination with microarray

analysis using nElavl KO tissue and in vitro binding assays to

identify functional interaction sites between neuronal nElavl
ron 75, 1067–1080, September 20, 2012 ª2012 Elsevier Inc. 1075
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Figure 6. nElavl-Dependent Regulation of the Brain Enzyme Glutaminase

(A) The twomRNA isoforms of the glutaminase gene (Gls) and nElavl binding sites are shown. Individual colors depict different experiments. Alternative use of a 30

splice site generates two Gls isoforms with different 30 terminal coding sequences and 30UTRs. Gls-s and Gls-l refer to short and long isoforms, respectively.

(B) RT-PCR amplification of the two Gls isoforms in WT and Elavl3�/�;Elavl4�/� cortex of age P0 mice.

(C) Western blot analysis of the two Gls isoforms in littermate WT and Elavl3�/�;Elavl4�/� cortex of age P0 mice. Each lane represents an independent mouse.

(D) Q-PCR quantification of the abundance of two Gls mRNA isoforms in littermate WT and Elavl3�/�;Elavl4�/� cortex of age P0 mice.

(E) Quantification of data shown in (C) as normalized to gamma tubulin.

(F) Quantification of total glutamate levels in cortex of 3 WT and 3 Elavl3�/�;Elavl4�/� littermate age P0 mice are presented. Glutamate levels in WT samples are

normalized to 100% in the y axis. *p < 0.01 (t test). Error bars denote standard deviation.

See also Figures S3 and S4 and Table S9.
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Figure 7. EEG Analysis of Cortical Function in Elavl3–/– Mice

Spontaneous bilateral EEG activity recorded from awake and behaving 3-to

6-month-old adult (A) WT, (B) Elavl3+/�, and (C) Elavl3�/� mice. Cortical

recordings are displayed from left (L-reference) and right (R-reference) hemi-

sphere temporoparietal electrodes. WT mice lack abnormal discharges seen

occurring intermittently in Elavl3+/� and Elavl3�/�mice. Brief seizures shown in

Elavl3�/� mice are accompanied by mild convulsive clonic movements.

Seizures were detected in both Elavl3�/� and Elav3�/+ mice. Calibration, 1 s

(A and C, 0.5 s in B), 200 microvolts (A–C). See also Figures S5 and S6, Tables

S10 and 11, and Movie S1.
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RNABPs and target RNA sequences. Our results demonstrate

that nElavl RNABPs preferentially bind to U-rich sequences

interspersed with purine residues (G > A) located on 30UTRs
and introns of target pre-mRNAs in the brain, which, taken

together with previous studies, indicates two apparently inde-

pendent functions of nElavl-RNA interactions. Specifically, we

demonstrate that nElavl proteins bind to intronic sequences at

flanking junctions of alternative exons on target pre-mRNAs,

revealing an nElavl-RNA map associated with nElavl-dependent

alternative splicing. We also find that by binding to 30UTRs nElavl
proteins regulate the steady state levels of distinct group of

mRNAs. Interestingly, the observation of coordinate and mutu-

ally reinforcing actions of nElavl proteins on Gls-1 RNA suggest

that its actions on pre-mRNA andmaturemRNA can be function-

ally interrelated.

Nonetheless, analysis of the set of directly regulated tran-

scripts suggests that nElavl proteins generally mediate different

functional roles in different regulatory contexts. Transcripts regu-

lated at the level of AS encode proteins involved in regulating

cytoskeleton dynamics, particularly in synapses, while those

regulated by 30UTR binding encode a markedly different set of

proteins involved in regulating basic biosynthetic pathways.

This may make some evolutionary sense, as regulating alterna-

tive exon content alters the quality of proteins, while 30UTR regu-

lation alters their quantity, two very different outcomes under

different sets of selective pressures. It will be of interest to deter-

mine whether such variable patterns of coordinate regulation are

evident in the analysis of the direct targets of additional RNABPs.

To date, targets of nElavl proteins have been studied mainly

using three approaches: in vitro RNA selection, relatively low-

stringency immunoprecipitation of nElavl-RNA complexes

(‘‘RIP’’) from cell lines followed by cDNA array hybridization of

precipitated RNA and the study of candidate genes based on
Neu
the presence of in vitro binding elements in their 30UTRs in

cultured cell lines. We compiled a list of 134 published targets

of nElavl, which are largely identified bioinformatically and

validated in vitro (Table S6). Most of these predicted targets

were not validated by our HITS-CLIP analysis; only �25%

were identified (with an FDR < 1.0). Therefore, while these

studies have led to determination of nElavl target sequence

specificity and of numerous target mRNAs, whether they reflect

nElavl-RNA interactions present in vivo in brain tissue remains

uncertain.Moreover, a large number of RNA selection and in vitro

binding studies report that nElavl proteins bind to AU-rich

elements (Table S6). In vivo, we find that nElavl prefers to bind

to related but distinct sites in the brain, consisting of U-rich

stretches approximately 15–20 nt long interspersed with G resi-

dues. The nElavl bindingmotif we determine is in agreement with

our independent in vitro RNA selection analysis, and with two

immunoprecipitation and cDNA array studies where the binding

preference for Elavl4 and the nonneuronally expressed Elavl1

paralog is reported as a GU rich stretch and a 20 nt long RNA

motif rich in uracils, respectively (Bolognani et al., 2010; López

de Silanes et al., 2004). These results reveal the utility of in vivo

HITS-CLIP as a means of clarifying in vitro studies of RNA-

protein interactions, which here initially led to the skewed

perception that nElavl proteins bind only to ARE elements (Table

S6). We find that nElavl proteins in fact bind GU-rich elements

relative to ARE elements by�1.3-fold and that it does so in clus-

ters, analogous to the way in which Nova proteins recognize

specific targets by binding clusters of low complexity YCAY

elements (Licatalosi et al., 2008; Zhang et al., 2010).

nElav Regulation of Alternative Splicing
Previous studies in Drosophila have indicated that nElavl

proteins are able to regulate alternative splicing (Koushika

et al., 2000; Lisbin et al., 2001; Soller and White, 2003, 2005).

Prior studies of mammalian nElavl splicing regulation has been

less clear, as neither comparisons in genetically modified

animals nor direct RNA binding assays have been previously em-

ployed. Here, we combined nElavl-RNA direct binding data with

bioinformatics and exon junction array data comparing splicing

in WT and KO animals to identify a definitive set of brain tran-

scripts directly regulated by nElavl proteins in vivo. The results

demonstrate that nElavl proteins directly bind neuronal pre-

mRNA to regulate alternative splicing and that the proteins

have redundant actions in this regard, as splicing changes

were uniformly more pronounced in DKO than Elavl3 or Elavl4

single KO brain.

Our nElavl-RNA map is reminiscent of the position-depen-

dence of splicing regulation observed for Nova, Fox2, hnRNP

C, hnRNPL, TIA1/2, TDP-43, Mbnl, Ptbp1, and Ptbp2 and gener-

ally conforms to the finding that preferential binding to down-

stream introns leads to exon inclusion, and to upstream introns

exon exclusion (Licatalosi et al., 2008, 2012; Llorian et al.,

2010; Tollervey et al., 2011; Ule and Darnell, 2006; Yeo et al.,

2009; Zhang et al., 2008). nElavl-mediated exon exclusion

may be more frequently associated with binding to both

upstream and downstream introns, a characteristic also noted

for TDP-43 associated alternative splicing. As was also seen in

the TDP-43 associated alternative splicing RNA-map, nElavl
ron 75, 1067–1080, September 20, 2012 ª2012 Elsevier Inc. 1077



Neuron

nElavl HITS-CLIP
binding was observed in deeper intronic sequences of a small

number of cassette exons. Our nElavl-RNA map is also in agree-

ment with several candidate target gene studies examining the

role of nElavl proteins in AS. For example, it was recently demon-

strated that Elavl3 promotes inclusion of the alternatively spliced

exon 6 of the Elavl4 gene by binding to U-rich sequences located

in the intron downstream to the alternative exon (Wang et al.,

2010a). Also, nElavl proteins suppress alternative exon 23a

inclusion in the Neurofilament1 (Nf1) pre-mRNA by binding to

U-rich intronic sequences on either intronic flanks of the cassette

exon (Zhu et al., 2008). Our HITS-CLIP data indeed confirmed

binding to two of the three nElavl target sequences reported in

these studies (Figure S2B).

nElav Regulation of Neuronal Excitability
Our analysis of nElavl RNA targets revealed a reduction in levels

of glutamate neurotransmitter in the brains of Elavl3�/�;Elavl4�/�

mice which corresponded to a decrease in Gls mRNA and

protein levels. Currently, we do not exactly understand the

mechanistic details of how nElavl proteins regulate the AS and

mRNA stability of Gls mRNA isoforms. While mechanisms of

post-transcriptional regulation of Gls-s and Gls-l mRNA are

largely unknown in neurons, an mRNA stabilizing role for Elavl1

(HuA/R) binding to an AU-rich pH-responsive element located

in the 30UTR of Gls-l during metabolic acidosis in kidney cells

is demonstrated (Ibrahim et al., 2008). It is also likely that nElavl

proteins enhance the translation of at least the Gls-s isoform,

since its mRNA levels are unaffected but proteins levels are

significantly reduced in the Elavl3�/�;Elavl4�/� brain tissue. The

Gls is the major glutamate synthesizing enzyme in neurons.

Elavl3�/�;Elavl4�/� mice display some similarity to Gls1�/�

mice, as both appear and behave normally at birth but die

suddenly thereafter; in Gls�/� mice early postnatal death has

been attributed to a deficiency in brain circuits controlling respi-

ration (Masson et al., 2006). Glutamate is the major excitatory

neurotransmitter and impacts inhibitory signaling in two ways:

it is both the biochemical precursor for the major inhibitory

neurotransmitter GABA in the mammalian forebrain (Martin and

Rimvall, 1993), and synaptically activates inhibitory neuronal

feedback loops (McBain and Fisahn, 2001). While the molecular

lesion due to aberrant AS in this model is complex, imbalance of

these key mediators of fast synaptic signaling in the Elavl3�/�

brain is a well established mechanism for neuronal hypersyn-

chrony and epilepsy (Noebels, 2003). The finding of abnormal

hypersynchronization in both Elavl3+/� and Elav3�/� mice

suggests that fine tuning of the stoichiometry of individual RNA

isoforms can regulate cortical excitability and synchronization.

On the behavioral level, we observe attenuation of cerebellum-

dependent motor function based on reduced rotarod assay

performance in Elavl3�/� mice. Whether or not this behavioral

defect results from reduced glutamatergic signaling and an

imbalance in excitation/inhibition in the cerebellum are of great

interest as future research questions.

Gls mRNA is alternatively spliced to generate two mRNA and

protein isoforms, and the longer Gls-l isoform is dramatically

reduced in both mRNA and protein levels in Elavl3�/�;Elavl4�/�

brain. Gls-s and Gls-l isoforms differ in their 30UTR sequences

and also C-terminal domains of their protein products. Both
1078 Neuron 75, 1067–1080, September 20, 2012 ª2012 Elsevier Inc
protein isoforms encode a glutaminase superfamily domain

involved in deamination of glutamine to glutamate. Interestingly,

four ankyrin repeat domains are present C-terminal to the

glutaminase superfamily domain in Gls-l but not in the Gls-s

isoforms. We suggest that nElavl regulates the protein interact-

ing partners of this critical enzyme by maintaining a balance

between the isoforms of the Gls gene.

Taken together, we establish nElavl proteins as regulators of

neuron-specific AS, determine an nElavl-RNA map associated

with alternative splicing and uncover a new nElavl-regulated

biological pathway, namely the glutamate synthesis pathway.

By investigating other nElavl targets our data set also offers

the possibility of identifying other interesting functions of these

neuronal proteins.

EXPERIMENTAL PROCEDURES

Generation of Elav3 Targeting Construct for Homologous

Recombination

A 17.7 kb targeting vector (see Supplemental Experimental Procedures) was

selected in SV-129 ES cells, transferred into the germline of SV129/FVB

mice, and the ACNF targeting cassette auto-excised in the male germ cells.

All animal studies in this work were in accordance with the Code of Practice

for the Housing and Care of Animals Used in Scientific Procedures, and was

approved by the Rockefeller University Comparative Biosciences Center.

Western Blot, Immunofluorescence Microscopy, and Antibodies

Western blots were performed using 50 mg of cortex extract per lane. A pan

anti-nElavl antibody (a-nElavl; paraneoplastic Hu antibody; RU IRB approved

protocol 0148; patient code NA-0018, a 63-year-old with small cell lung cancer

and Hu encephalomyelopathy who had a pan-sensory neuropathy expired

from prolonged status epilepticus) was used for IF.

nElavl HITS CLIP

nElavl-RNA complexes in brain tissue were UV crosslinked and immunopre-

cipitated using specific human antisera. Isolated RNA molecules were

reverse-transcribed, PCR amplified and sequenced on an Illumina GAIIx at

the Rockefeller University Genomics Resource Center (see Supplemental

Information).

Microarrays

Three and one-half micrograms of total RNA from Elavl3�/�;Elavl4�/� and

littermateWT P0mice cortical tissue was reverse transcribed and sense target

DNA was prepared as described in ‘‘GeneChip Whole-Transcript (WT) Sense

Target Labeling Assay’’ protocol from Affymetrix. Labeled Target DNA was

hybridized to GeneChip Mouse Exon 1.0 ST Array and to custom made

Exon Junction Array (Affymetrix) at the Rockefeller University Genomics

Resource Center.

RNA Isolation and Validation of nElavl Targets by RT-PCR

RT-PCR was used to validate alternative splicing changes as described (Lica-

talosi et al., 2008; Ule et al., 2005b). P0 cortex was dissected and immediately

frozen in �80�C. RNA was isolated using Trizol plus RNA purification kit

(Invitrogen). RNA was reverse transcribed using superscript III reverse tran-

scriptase (Invitrogen). Abundance of RNA isoforms were determined by semi-

quantitative RT-PCR or where indicated by quantitative PCR, respectively. The

number of PCR cycles used was in the linear range of product amplification.

Measurement of Brain Glutaminase and Glutamate Levels

Rabbit anti-glutaminase antibodywas courtesy of NormanCurthoys, Colorado

State University. Cortex was dissected out at P0 and immediately frozen

at �80�C. Tissue was then lysed in assay buffer for 10 min, spun down and

supernatant was collected for measurements (Glutamate Assay Kit, Biovision).

Glutamate levels were normalized to total protein levels as measured by

Bradford assay.
.
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Bioinformatics

See Supplemental Experimental Procedures.

Microarray Analysis

Mouse 1.0 ST exon array signals were analyzed using, X-ray (Biotique),

Expression Console (Affymetrix) software, Excel, and Filemaker Pro programs.

Exon junction microarray signals were analyzed using Aspire2 (Ule et al.,

2005b).

nElavl HITS-CLIP Tag Sequence Analysis

Sequence reads (tags) were aligned to the mm9 build of the mouse genome.

PCR duplicates were filtered out and unique tags were identified using the

RefSeq reference database. Tag clusters were defined as at least two

tags that have at least one overlapping base. Biologic complexity (BC) for a

cluster was the number of independent CLIP experiments that have a tag in

that cluster.

nElavl Consensus Sequence Analysis

The MEME-CHIP Suite was used for all motif analyses (Bailey and Elkan,

1994).

nElavl-RNA Alternative Splicing Map

The map was generated by calculating the distance of nElavl HITS-CLIP tags

from exon/intron junctions of nElavl-regulated cassette exons and flanking

constitutive exons. Normalized tag distances were mapped onto a composite

nElavl AS map.

Gene Ontology Analysis

Top 119 transcripts (p < 0.01) obtained from analysis of Gene Chip Mouse

Exon 1.0 ST Array and top 212 transcripts (dI-rank > j10j) obtained from

analysis of Exon Junction Microarray Aspire2 results were used. Those tran-

scripts whose abundance was above an expression level cutoff as determined

by signal intensity from Mouse Exon 1.0ST Array results of WT samples were

used as the background gene list. All GO analysis was done using DAVID

Bioinformatics Resources 6.7 (Huang et al., 2009a, 2009b).

Video Electroencephalographic (vEEG) Recordings

Adult Elavl3�/�, Elavl3+/�, and unaffected WT littermate mice (aged

3–6 months) were surgically implanted for chronic cortical electroencephalog-

raphy. Mice were anesthetized with Avertin (1.25% tribromoethanol/amyl

alcohol solution, i.p.) using a dose of 0.02 ml/g. Teflon-coated silver wire

electrodes (0.005 inch diameter) soldered to a microminiature connector

were implanted bilaterally into the subdural space over temporal, parietal,

and occipital cortices. Digital EEG activity was monitored daily for up to

2 weeks during prolonged overnight and random 3 hr sample recordings (Stel-

late Systems, Harmonie software version 6.1c). A video camera was used to

monitor behavior during the EEG recording periods. All recordings were

carried out at least 24 hr after surgery on mice freely moving in the test cage.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, eleven tables, one movie,

and Supplemental Experimental Procedures and can be found with this article

online at http://dx.doi.org/10.1016/j.neuron.2012.07.009.
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